Years ago, in a letter to the editor of Physics Today (February, 1979) we noted that the “market may be considered an open system in which an adequate flow of money will effect a transition from disorder (random walk) to order (cooperative or crowd behavior).” Open systems in the physical sciences require a flow of energy to maintain an ordered state far from thermal equilibrium. For example, a laser requires energy to be pumped continuously to maintain a coherent state. In the financial markets, price stability requires a flow of money or credit. In the Great Depression, credit became scarce as the bubble in stock prices unwound after the "Roaring Twenties." The current credit crisis involves the unwinding of the housing bubble and associated derivative securities.
We define a market “attractor” as a conditional return map, i.e. the average return on the day after a prior day return, R(T-1), that falls into one of five intervals:
small price changes [-0.5% < R(T-1) < +0.5%]
moderate price increases [+0.5% < R(T-1) < +3.5%]
moderate price declines [-0.5% > R(T-1) > -3.5%]
large price increase [+3.5% < R(T-1)]
large price declines [-3.5%] > R(T-1)]
Figure 1 summarizes the average conditional return map for the Dow Jones Industrial Average over the 80 year period from 1929 to 2009. A nonlinear third order polynomial fit is shown and illustrates that the market has been trend persistent on average over this period. The slope of the return map is positive in the region of moderate returns.
Figure 1. Over the past eighty years the Dow Jones Industrial Average has been governed on average by a coherent, trend persistent dynamic.
The conditional return map in Figure 1 illustrates a bistable attractor for the market. Moderate positive returns are followed on average by further positive returns. Similarly, moderate negative returns are followed on average by further negative returns. These drifts are toward dynamic equilibrium points (where the return map crosses zero) far from the market’s long term average daily return.
Next, we identify state transitions from a mean regressive market attractor to a bistable state attractor. First we define a bifurcation parameter as the sum over 200 days of conditional returns following moderate price increases (as defined above), minus the sum over 200 days of conditional returns after moderate price declines. In a mean regressive market, where the return map has a negative slope, this metric is negative whereas in a trend persistent market it is positive. The market attractor bifurcates as this measure crosses zero.
The bifurcation parameter is plotted in Figure 2. The most significant mean regressive markets occurred in the Great Depression era of the 1930s, though there were some wild swings in this indicator. From the 1940s to about 1980, the market was primarily in a trend persistent state and fluctuations of the bifurcation parameter were primarily around a positive mean. The further the bifurcation parameter deviates from zero, the better the opportunities for short term trading: in the Great Depression era a mean reversion strategy would have offered the best chance for success; from 1940 to 1980, a trend following strategy had the odds in its favor. However, more recently with the advent of computerized trading and negotiated commissions, the market has become more efficient, with less opportunity for trading.
Figure 2. The bifurcation parameter is negative in mean reverting market states and positive in trend persistent coherent markets, reflecting the slope of the conditional return map for moderate returns.
Figure 3 illustrates the market return map or attractor for market periods between 1929 and 2009 when the bifurcation parameter is negative. In this situation, moderate positive returns are followed on average by negative returns on the following day; moderate negative returns are followed by positive returns on average.
Figure 3. The market is mean regressive when the slope of the conditional return map and the bifurcation parameter are negative.
Recently the bifurcation parameter has dropped deeply into negative territory. This is an unusual development since this indicator hasn’t fallen this far since the Great Depression era. A short term trading strategy designed to profit from the market’s regression to the mean after moderate returns is appropriate in this market state. A strategy of avoiding equity positions entirely when the bifurcation parameter drops below -10% is illustrated in Figure 4. This straategy would have outperformed a buy and hold both in the Crash of 1929 and also successfully avoided much of the recent market meltdown. However, there is no assurance as to how it will work in the future particularly as it is based on a lagging indicator of market dynamics.
Figure 4. Avoiding mean reverting markets (negative bifurcation parameter) has shown profitable back testing results, but may not work in future markets.
Thursday, March 5, 2009
kaoseteooria ja majanduskriis
Leo Võhandu, TTÜ emeriitprofessor
For complete article, click here
Kaos tähendab igapäevakeeles täielikku segadust ja korralagedust. Füüsikas tähendab see mingi süsteemi osiste vastastikust mittelineaarset mõjutamist koos kõigi või peaaegu kõigi süsteemsete liikumiste ebastabiilsusega. Keerulisevõitu väljend on, aga asja olemuse seletab ilusasti ära.
Et füüsikud ja mehaanikud kaoses päris hästi orienteeruvad, siis heietab nii mõnigi lootust, et ehk aitab kaoseteooria meil kriisiolukorrast pääseda. Kiiret lahendust see teooria muidugi pakkuda ei saa, aga üht-teist kasulikku majanduse ja valuutaturgude jaoks võib sealt leida küll.
Kõigepealt märgime, et eesti keeles on ilmunud kahe akadeemiku sulest kaks head ja loetavat raamatut kaoseteooria radadelt. Esimene neist pärineb Tartu Ülikooli mehaanika emeriitprofessori Ülo Lepiku sulest – «Kaos ja kord» (1997). Teise ja hoopis kopsakama raamatu kirjutasid akadeemikud Ülo Lepik ja Jüri Engelbrecht paar aastat hiljem. Selle pealkiri «Kaoseraamat» on küll lühike, aga sisu on see-eest õige huvitav.
...
Kummalisel kombel on just kaks Eestiga tugevalt seotud meest tõestanud, et kaoseteooriast on rikkaks saamise mõttes õige palju kasu.
Veidi vanem neist kahest kannab nime Tõnis Vaga. Usutavasti on ta praegu maailmas kõige tsiteeritum eestlasest majandusteadlane. See on mees, kes 1994. aastal avaldas põhjapaneva ingliskeelse raamatu: Tonis Vaga «Profiting from Chaos» («Kaosest tulu teenimine»). Mul õnnestus see raamat poolkogemata 1995. aastal ühest Tallinna raamatupoest leida ja osta. Alguses arvasin, et on tegu mõne lõunaameeriklasega, kuid järsku taipasin, et selle nime taga võib olla hoopis eestlane Tõnis. Asi sai kohe klaariks, kui vaatasin raamatu pühenduste lehekülge. Üks pühendustest oli tütrele nimega Maie. Nii et oligi eestlane. Pärastine internetikontroll tõestas kah, et tegu on praegu 60-aastase üpris tragi USA eesti kogukonna liikmega.
Vaga on hariduselt füüsik, kuid 1979. aastal avaldas ta ülimalt olulise artikli aktsiaturu hindade kõikumisest ja hiljem ka nn koherentsete turgude teooria, mis mõlemad äratasid majandusteadlaste hulgas suurt tähelepanu. Nii ta asuski oma ideid majanduses realiseerima suurfirma Booz Allen Hamilton vanempartnerina. Muide, Vaga raamatut ei leia te ühestki Eesti raamatukogust, küll aga on see vabalt kõigile kättesaadav Google’i elektronraamatute hulgas.
Teine Eestist pärit mees, kelle kirjutatud raamatud valuutaturgudel kauplemisest USAs õige menukad on, on Alexander Elder. Vagast aasta nooremana sündis ta küll Leningradis, kuid elas Eestis ja õppis Tartus meditsiini. Ta asus tööle kalalaeva arstina. Aafrika ranna lähedal kala püüdes hüppas ta laevalt ära läände ning sai USAs poliitilise varjupaiga. Elder töötas psühhiaatrina New Yorgis ja õpetas muide ka Columbia Ülikoolis.
Psühhiaatrina pakkus valuutaturg talle omamoodi väljakutset ning nüüdseks on ta kirjutanud paraja paki väga menukaid raamatuid valuutaturgudel kauplemisest. Neid raamatuid on tõlgitud 12 keelde. Tartu Ülikooli raamatukogus on Elderi raamatutest olemas viis, Tallinna raamatukogudes mitte ühtegi...
For complete article, click here
Kaos tähendab igapäevakeeles täielikku segadust ja korralagedust. Füüsikas tähendab see mingi süsteemi osiste vastastikust mittelineaarset mõjutamist koos kõigi või peaaegu kõigi süsteemsete liikumiste ebastabiilsusega. Keerulisevõitu väljend on, aga asja olemuse seletab ilusasti ära.
Et füüsikud ja mehaanikud kaoses päris hästi orienteeruvad, siis heietab nii mõnigi lootust, et ehk aitab kaoseteooria meil kriisiolukorrast pääseda. Kiiret lahendust see teooria muidugi pakkuda ei saa, aga üht-teist kasulikku majanduse ja valuutaturgude jaoks võib sealt leida küll.
Kõigepealt märgime, et eesti keeles on ilmunud kahe akadeemiku sulest kaks head ja loetavat raamatut kaoseteooria radadelt. Esimene neist pärineb Tartu Ülikooli mehaanika emeriitprofessori Ülo Lepiku sulest – «Kaos ja kord» (1997). Teise ja hoopis kopsakama raamatu kirjutasid akadeemikud Ülo Lepik ja Jüri Engelbrecht paar aastat hiljem. Selle pealkiri «Kaoseraamat» on küll lühike, aga sisu on see-eest õige huvitav.
...
Kummalisel kombel on just kaks Eestiga tugevalt seotud meest tõestanud, et kaoseteooriast on rikkaks saamise mõttes õige palju kasu.
Veidi vanem neist kahest kannab nime Tõnis Vaga. Usutavasti on ta praegu maailmas kõige tsiteeritum eestlasest majandusteadlane. See on mees, kes 1994. aastal avaldas põhjapaneva ingliskeelse raamatu: Tonis Vaga «Profiting from Chaos» («Kaosest tulu teenimine»). Mul õnnestus see raamat poolkogemata 1995. aastal ühest Tallinna raamatupoest leida ja osta. Alguses arvasin, et on tegu mõne lõunaameeriklasega, kuid järsku taipasin, et selle nime taga võib olla hoopis eestlane Tõnis. Asi sai kohe klaariks, kui vaatasin raamatu pühenduste lehekülge. Üks pühendustest oli tütrele nimega Maie. Nii et oligi eestlane. Pärastine internetikontroll tõestas kah, et tegu on praegu 60-aastase üpris tragi USA eesti kogukonna liikmega.
Vaga on hariduselt füüsik, kuid 1979. aastal avaldas ta ülimalt olulise artikli aktsiaturu hindade kõikumisest ja hiljem ka nn koherentsete turgude teooria, mis mõlemad äratasid majandusteadlaste hulgas suurt tähelepanu. Nii ta asuski oma ideid majanduses realiseerima suurfirma Booz Allen Hamilton vanempartnerina. Muide, Vaga raamatut ei leia te ühestki Eesti raamatukogust, küll aga on see vabalt kõigile kättesaadav Google’i elektronraamatute hulgas.
Teine Eestist pärit mees, kelle kirjutatud raamatud valuutaturgudel kauplemisest USAs õige menukad on, on Alexander Elder. Vagast aasta nooremana sündis ta küll Leningradis, kuid elas Eestis ja õppis Tartus meditsiini. Ta asus tööle kalalaeva arstina. Aafrika ranna lähedal kala püüdes hüppas ta laevalt ära läände ning sai USAs poliitilise varjupaiga. Elder töötas psühhiaatrina New Yorgis ja õpetas muide ka Columbia Ülikoolis.
Psühhiaatrina pakkus valuutaturg talle omamoodi väljakutset ning nüüdseks on ta kirjutanud paraja paki väga menukaid raamatuid valuutaturgudel kauplemisest. Neid raamatuid on tõlgitud 12 keelde. Tartu Ülikooli raamatukogus on Elderi raamatutest olemas viis, Tallinna raamatukogudes mitte ühtegi...
Sunday, March 1, 2009
Nonlinear and Chaotic Dynamics and its Application to Historical Financial Markets
Hartmut Kiehling*
For complete article click here.
Abstract: For roughly 15 years, economic research has been involved with chaotic systems. During these years chaos theory took a firm place in science, although the enthusiasm of the first decade was followed by a more subdued kind of consideration. This might be the time to sum up some of the results and to develop some ideas concerning possible applications of chaos theory to economic history (and its theory). Since a good portion of the chaos research that has been done until now deals with financial markets, we will consider that section of economics.
* Address all communications to Hartmut Kiehling, Heerstraße 9, D-81247 München,
Tel. +49-(0)89-8116379, Fax. +49-(0)89-8110189, e-mail: 101520.2007@compu-serve.com, 0898110189@t-online.de.
T. Vaga published his Coherent Market Hypothesis as a nonlinear statistical model. He distinguishes four market phases: random walk, transition, chaotic markets, and coherent markets. Each one is characterized by different kinds of attitudes and the mutual influence of investors. The model follows the psychological theory of social imitation, but is formulated mathematically. 15
For complete article click here.
Abstract: For roughly 15 years, economic research has been involved with chaotic systems. During these years chaos theory took a firm place in science, although the enthusiasm of the first decade was followed by a more subdued kind of consideration. This might be the time to sum up some of the results and to develop some ideas concerning possible applications of chaos theory to economic history (and its theory). Since a good portion of the chaos research that has been done until now deals with financial markets, we will consider that section of economics.
* Address all communications to Hartmut Kiehling, Heerstraße 9, D-81247 München,
Tel. +49-(0)89-8116379, Fax. +49-(0)89-8110189, e-mail: 101520.2007@compu-serve.com, 0898110189@t-online.de.
T. Vaga published his Coherent Market Hypothesis as a nonlinear statistical model. He distinguishes four market phases: random walk, transition, chaotic markets, and coherent markets. Each one is characterized by different kinds of attitudes and the mutual influence of investors. The model follows the psychological theory of social imitation, but is formulated mathematically. 15
Scientific Frontiers and Technical Analysis
Kevin P. Hanley, CMT
Abstract
Are there scientific foundations to Technical Analysis (TA) or is it a pseudo-science? Academia, embracing the Random Walk Theory, the Efficient Market Hypothesis (EMH) and Modern Portfolio Theory (MPT) has argued the latter for some 20 years or more. In fact, according to current orthodoxy, both TA and Fundamental Analysis are fruitless distractions and cannot add value. The advent of Behavioral Science has illuminated some of the flaws in the standard model. Andrew W. Lo’s Adaptive Markets Hypothesis reconciles efficient markets with human behavior by taking an evolutionary perspective. According to Lo, markets are driven by competition, adaptation, and natural selection. What is missing is a more accurate and comprehensive model of the market itself. Chaos and Complex system theories provide a more comprehensive understanding of market behavior. The markets can be seen as chaotic, complex, self-organizing, evolving and adaptive, driven by human behavior and psychology. Patterns in the market are emergent properties. Identifying these patterns has predictive value, but certainties must be left behind; only probabilities remain. TA, shown to be the inductive science of financial markets, is an essential tool for identifying these emergent properties and analyzing their probabilities. Lastly, so that the science of TA may advance, the field must distinguish between scientific, empirically based, market analysis theory and the categories of interpretation and practical trading strategies.
Are there scientific foundations to Technical Analysis (TA) or is it a pseudo-science? Academia, embracing the Random Walk Theory, the Efficient Market Hypothesis (EMH) and Modern Portfolio Theory (MPT) has argued the latter for some 20 years or more. In fact, according to current orthodoxy, both TA and Fundamental Analysis are fruitless distractions and cannot add value. The advent of Behavioral Science has illuminated some of the flaws in the standard model. Andrew W. Lo’s Adaptive Markets Hypothesis reconciles efficient markets with human behavior by taking an evolutionary perspective. According to Lo, markets are driven by competition, adaptation, and natural selection. What is missing is a more accurate and comprehensive model of the market itself. Chaos and Complex system theories provide a more comprehensive understanding of market behavior. The markets can be seen as chaotic, complex, self-organizing, evolving and adaptive, driven by human behavior and psychology. Patterns in the market are emergent properties. Identifying these patterns has predictive value, but certainties must be left behind; only probabilities remain. TA, shown to be the inductive science of financial markets, is an essential tool for identifying these emergent properties and analyzing their probabilities. Lastly, so that the science of TA may advance, the field must distinguish between scientific, empirically based, market analysis theory and the categories of interpretation and practical trading strategies.
Chapter 17. Hybrid Intelligent Decision Support Systems and Applications for Risk Analysis and Discovery of Evolving Economic Clusters in Europe
N. Kasabov , L. Erzegovesi , M. Fedrizzi , A. Beber , and D. Deng
Dept. of Information Science, Univ. of Otago, Dunedin, New Zealand.
E-mail: nkasabov, ddeng@infoscience.otago.ac.nz
Dept. of Informatics and Faculty of Economics, Univ. of Trento, Italy
For complete paper click here.
The goal of this project is to develop a computational model for analyzing and anticipating signals of abrupt changes of volatility in financial markets. The system will be aimed at assessing the possibility of speculative attacks against specific EMU member countries, prospective EMU members or the EMU area as a whole. Potential users of the system include monetary authorities, asset managers, traders on money, debt, currency and stock markets and corporate financial managers.
The conceptual model underlying the computational model will be derived from a representation of financial markets as complex dynamic systems, whose stochastic behavior is influenced by exogenous shocks and endogenous uncertainty, the latter caused by interaction among market participants (degree of consensus and tendency to crowd behavior). Inspiration for this approach came from a paper by Tonis Vaga ([50]).
Dept. of Information Science, Univ. of Otago, Dunedin, New Zealand.
E-mail: nkasabov, ddeng@infoscience.otago.ac.nz
Dept. of Informatics and Faculty of Economics, Univ. of Trento, Italy
For complete paper click here.
The goal of this project is to develop a computational model for analyzing and anticipating signals of abrupt changes of volatility in financial markets. The system will be aimed at assessing the possibility of speculative attacks against specific EMU member countries, prospective EMU members or the EMU area as a whole. Potential users of the system include monetary authorities, asset managers, traders on money, debt, currency and stock markets and corporate financial managers.
The conceptual model underlying the computational model will be derived from a representation of financial markets as complex dynamic systems, whose stochastic behavior is influenced by exogenous shocks and endogenous uncertainty, the latter caused by interaction among market participants (degree of consensus and tendency to crowd behavior). Inspiration for this approach came from a paper by Tonis Vaga ([50]).
Portfolio optimization with a neural network implementation of the coherent market hypothesis
Manfred Steiner and Hans-Georg Wittkemper
Westfälische Wilhelms-Universität Munster, Lehrstuhl für Betriebswirtschaftslehre, Schwerpunkt Finanzierung, Am Stadtgraben 13–15, D-48143, Münster, Germany
Abstract
Capital market research seems to be widely governed by traditional static linear models like arbitrage pricing theory and capital asset pricing model, though there is some evidence that better results can be achieved using nonlinear approaches. In this study we described a portfolio optimization model based on artificial neural networks embedded in the framework of a nonlinear dynamic capital market model, the coherent market hypothesis. The main advantage of this theory is that it drops the premise of rational investors and therefore relaxes the precondition of approximately normally distributed stock returns. Neural networks are used to estimate the return distributions in order to forecast the fundamental situation and the level of group behavior of the specific stocks. On the basis of these forecasts the relative stock performance is predicted and used to manage stock portfolios, In a simulation with out-of-sample data from 1991–1994 a portfolio constructed from the eight best ranked stocks achieved an annual return rate about 25% higher than that of the market portfolio and one built from the eight worst ranked stocks attained a return about 25% lower than the market portfolio's return rate. A hedging strategy based on the two aforementioned portfolios leads to a consistently positive annual return of about 25% regardless of the movements of the market portfolio with only 41% of the risk of a buy and hold strategy in the market portfolio.
Westfälische Wilhelms-Universität Munster, Lehrstuhl für Betriebswirtschaftslehre, Schwerpunkt Finanzierung, Am Stadtgraben 13–15, D-48143, Münster, Germany
Abstract
Capital market research seems to be widely governed by traditional static linear models like arbitrage pricing theory and capital asset pricing model, though there is some evidence that better results can be achieved using nonlinear approaches. In this study we described a portfolio optimization model based on artificial neural networks embedded in the framework of a nonlinear dynamic capital market model, the coherent market hypothesis. The main advantage of this theory is that it drops the premise of rational investors and therefore relaxes the precondition of approximately normally distributed stock returns. Neural networks are used to estimate the return distributions in order to forecast the fundamental situation and the level of group behavior of the specific stocks. On the basis of these forecasts the relative stock performance is predicted and used to manage stock portfolios, In a simulation with out-of-sample data from 1991–1994 a portfolio constructed from the eight best ranked stocks achieved an annual return rate about 25% higher than that of the market portfolio and one built from the eight worst ranked stocks attained a return about 25% lower than the market portfolio's return rate. A hedging strategy based on the two aforementioned portfolios leads to a consistently positive annual return of about 25% regardless of the movements of the market portfolio with only 41% of the risk of a buy and hold strategy in the market portfolio.
Subscribe to:
Posts (Atom)